3.1.63 \(\int \frac {7+5 x}{\sqrt {2-3 x} \sqrt {-5+2 x} \sqrt {1+4 x}} \, dx\) [63]

3.1.63.1 Optimal result
3.1.63.2 Mathematica [A] (verified)
3.1.63.3 Rubi [A] (verified)
3.1.63.4 Maple [A] (verified)
3.1.63.5 Fricas [C] (verification not implemented)
3.1.63.6 Sympy [F]
3.1.63.7 Maxima [F]
3.1.63.8 Giac [F]
3.1.63.9 Mupad [F(-1)]

3.1.63.1 Optimal result

Integrand size = 33, antiderivative size = 98 \[ \int \frac {7+5 x}{\sqrt {2-3 x} \sqrt {-5+2 x} \sqrt {1+4 x}} \, dx=-\frac {5 \sqrt {11} \sqrt {-5+2 x} E\left (\arcsin \left (\frac {2 \sqrt {2-3 x}}{\sqrt {11}}\right )|-\frac {1}{2}\right )}{6 \sqrt {5-2 x}}+\frac {13 \sqrt {\frac {3}{22}} \sqrt {5-2 x} \operatorname {EllipticF}\left (\arcsin \left (\sqrt {\frac {3}{11}} \sqrt {1+4 x}\right ),\frac {1}{3}\right )}{\sqrt {-5+2 x}} \]

output
13/22*EllipticF(1/11*33^(1/2)*(1+4*x)^(1/2),1/3*3^(1/2))*66^(1/2)*(5-2*x)^ 
(1/2)/(-5+2*x)^(1/2)-5/6*EllipticE(2/11*(2-3*x)^(1/2)*11^(1/2),1/2*I*2^(1/ 
2))*11^(1/2)*(-5+2*x)^(1/2)/(5-2*x)^(1/2)
 
3.1.63.2 Mathematica [A] (verified)

Time = 8.67 (sec) , antiderivative size = 187, normalized size of antiderivative = 1.91 \[ \int \frac {7+5 x}{\sqrt {2-3 x} \sqrt {-5+2 x} \sqrt {1+4 x}} \, dx=\frac {220 \sqrt {1+4 x} \left (10-19 x+6 x^2\right )+55 \sqrt {66} \sqrt {\frac {-5+2 x}{1+4 x}} \sqrt {\frac {-2+3 x}{1+4 x}} (1+4 x)^2 E\left (\arcsin \left (\frac {\sqrt {11}}{\sqrt {1+4 x}}\right )|\frac {1}{3}\right )-78 \sqrt {66} \sqrt {\frac {-5+2 x}{1+4 x}} \sqrt {\frac {-2+3 x}{1+4 x}} (1+4 x)^2 \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {11}}{\sqrt {1+4 x}}\right ),\frac {1}{3}\right )}{132 \sqrt {2-3 x} \sqrt {-5+2 x} (1+4 x)} \]

input
Integrate[(7 + 5*x)/(Sqrt[2 - 3*x]*Sqrt[-5 + 2*x]*Sqrt[1 + 4*x]),x]
 
output
(220*Sqrt[1 + 4*x]*(10 - 19*x + 6*x^2) + 55*Sqrt[66]*Sqrt[(-5 + 2*x)/(1 + 
4*x)]*Sqrt[(-2 + 3*x)/(1 + 4*x)]*(1 + 4*x)^2*EllipticE[ArcSin[Sqrt[11]/Sqr 
t[1 + 4*x]], 1/3] - 78*Sqrt[66]*Sqrt[(-5 + 2*x)/(1 + 4*x)]*Sqrt[(-2 + 3*x) 
/(1 + 4*x)]*(1 + 4*x)^2*EllipticF[ArcSin[Sqrt[11]/Sqrt[1 + 4*x]], 1/3])/(1 
32*Sqrt[2 - 3*x]*Sqrt[-5 + 2*x]*(1 + 4*x))
 
3.1.63.3 Rubi [A] (verified)

Time = 0.20 (sec) , antiderivative size = 101, normalized size of antiderivative = 1.03, number of steps used = 6, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.182, Rules used = {176, 124, 123, 131, 27, 129}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {5 x+7}{\sqrt {2-3 x} \sqrt {2 x-5} \sqrt {4 x+1}} \, dx\)

\(\Big \downarrow \) 176

\(\displaystyle \frac {39}{2} \int \frac {1}{\sqrt {2-3 x} \sqrt {2 x-5} \sqrt {4 x+1}}dx+\frac {5}{2} \int \frac {\sqrt {2 x-5}}{\sqrt {2-3 x} \sqrt {4 x+1}}dx\)

\(\Big \downarrow \) 124

\(\displaystyle \frac {5 \sqrt {2 x-5} \int \frac {\sqrt {5-2 x}}{\sqrt {2-3 x} \sqrt {4 x+1}}dx}{2 \sqrt {5-2 x}}+\frac {39}{2} \int \frac {1}{\sqrt {2-3 x} \sqrt {2 x-5} \sqrt {4 x+1}}dx\)

\(\Big \downarrow \) 123

\(\displaystyle \frac {39}{2} \int \frac {1}{\sqrt {2-3 x} \sqrt {2 x-5} \sqrt {4 x+1}}dx+\frac {5 \sqrt {\frac {11}{6}} \sqrt {2 x-5} E\left (\arcsin \left (\sqrt {\frac {3}{11}} \sqrt {4 x+1}\right )|\frac {1}{3}\right )}{2 \sqrt {5-2 x}}\)

\(\Big \downarrow \) 131

\(\displaystyle \frac {39 \sqrt {5-2 x} \int \frac {\sqrt {\frac {11}{2}}}{\sqrt {2-3 x} \sqrt {5-2 x} \sqrt {4 x+1}}dx}{\sqrt {22} \sqrt {2 x-5}}+\frac {5 \sqrt {\frac {11}{6}} \sqrt {2 x-5} E\left (\arcsin \left (\sqrt {\frac {3}{11}} \sqrt {4 x+1}\right )|\frac {1}{3}\right )}{2 \sqrt {5-2 x}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {39 \sqrt {5-2 x} \int \frac {1}{\sqrt {2-3 x} \sqrt {5-2 x} \sqrt {4 x+1}}dx}{2 \sqrt {2 x-5}}+\frac {5 \sqrt {\frac {11}{6}} \sqrt {2 x-5} E\left (\arcsin \left (\sqrt {\frac {3}{11}} \sqrt {4 x+1}\right )|\frac {1}{3}\right )}{2 \sqrt {5-2 x}}\)

\(\Big \downarrow \) 129

\(\displaystyle \frac {13 \sqrt {\frac {3}{22}} \sqrt {5-2 x} \operatorname {EllipticF}\left (\arcsin \left (\sqrt {\frac {3}{11}} \sqrt {4 x+1}\right ),\frac {1}{3}\right )}{\sqrt {2 x-5}}+\frac {5 \sqrt {\frac {11}{6}} \sqrt {2 x-5} E\left (\arcsin \left (\sqrt {\frac {3}{11}} \sqrt {4 x+1}\right )|\frac {1}{3}\right )}{2 \sqrt {5-2 x}}\)

input
Int[(7 + 5*x)/(Sqrt[2 - 3*x]*Sqrt[-5 + 2*x]*Sqrt[1 + 4*x]),x]
 
output
(5*Sqrt[11/6]*Sqrt[-5 + 2*x]*EllipticE[ArcSin[Sqrt[3/11]*Sqrt[1 + 4*x]], 1 
/3])/(2*Sqrt[5 - 2*x]) + (13*Sqrt[3/22]*Sqrt[5 - 2*x]*EllipticF[ArcSin[Sqr 
t[3/11]*Sqrt[1 + 4*x]], 1/3])/Sqrt[-5 + 2*x]
 

3.1.63.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 123
Int[Sqrt[(e_.) + (f_.)*(x_)]/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_ 
)]), x_] :> Simp[(2/b)*Rt[-(b*e - a*f)/d, 2]*EllipticE[ArcSin[Sqrt[a + b*x] 
/Rt[-(b*c - a*d)/d, 2]], f*((b*c - a*d)/(d*(b*e - a*f)))], x] /; FreeQ[{a, 
b, c, d, e, f}, x] && GtQ[b/(b*c - a*d), 0] && GtQ[b/(b*e - a*f), 0] &&  !L 
tQ[-(b*c - a*d)/d, 0] &&  !(SimplerQ[c + d*x, a + b*x] && GtQ[-d/(b*c - a*d 
), 0] && GtQ[d/(d*e - c*f), 0] &&  !LtQ[(b*c - a*d)/b, 0])
 

rule 124
Int[Sqrt[(e_.) + (f_.)*(x_)]/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_ 
)]), x_] :> Simp[Sqrt[e + f*x]*(Sqrt[b*((c + d*x)/(b*c - a*d))]/(Sqrt[c + d 
*x]*Sqrt[b*((e + f*x)/(b*e - a*f))]))   Int[Sqrt[b*(e/(b*e - a*f)) + b*f*(x 
/(b*e - a*f))]/(Sqrt[a + b*x]*Sqrt[b*(c/(b*c - a*d)) + b*d*(x/(b*c - a*d))] 
), x], x] /; FreeQ[{a, b, c, d, e, f}, x] &&  !(GtQ[b/(b*c - a*d), 0] && Gt 
Q[b/(b*e - a*f), 0]) &&  !LtQ[-(b*c - a*d)/d, 0]
 

rule 129
Int[1/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(e_) + (f_.)*(x 
_)]), x_] :> Simp[2*(Rt[-b/d, 2]/(b*Sqrt[(b*e - a*f)/b]))*EllipticF[ArcSin[ 
Sqrt[a + b*x]/(Rt[-b/d, 2]*Sqrt[(b*c - a*d)/b])], f*((b*c - a*d)/(d*(b*e - 
a*f)))], x] /; FreeQ[{a, b, c, d, e, f}, x] && GtQ[(b*c - a*d)/b, 0] && GtQ 
[(b*e - a*f)/b, 0] && PosQ[-b/d] &&  !(SimplerQ[c + d*x, a + b*x] && GtQ[(d 
*e - c*f)/d, 0] && GtQ[-d/b, 0]) &&  !(SimplerQ[c + d*x, a + b*x] && GtQ[(( 
-b)*e + a*f)/f, 0] && GtQ[-f/b, 0]) &&  !(SimplerQ[e + f*x, a + b*x] && GtQ 
[((-d)*e + c*f)/f, 0] && GtQ[((-b)*e + a*f)/f, 0] && (PosQ[-f/d] || PosQ[-f 
/b]))
 

rule 131
Int[1/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(e_) + (f_.)*(x 
_)]), x_] :> Simp[Sqrt[b*((c + d*x)/(b*c - a*d))]/Sqrt[c + d*x]   Int[1/(Sq 
rt[a + b*x]*Sqrt[b*(c/(b*c - a*d)) + b*d*(x/(b*c - a*d))]*Sqrt[e + f*x]), x 
], x] /; FreeQ[{a, b, c, d, e, f}, x] &&  !GtQ[(b*c - a*d)/b, 0] && Simpler 
Q[a + b*x, c + d*x] && SimplerQ[a + b*x, e + f*x]
 

rule 176
Int[((g_.) + (h_.)*(x_))/(Sqrt[(a_.) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]* 
Sqrt[(e_) + (f_.)*(x_)]), x_] :> Simp[h/f   Int[Sqrt[e + f*x]/(Sqrt[a + b*x 
]*Sqrt[c + d*x]), x], x] + Simp[(f*g - e*h)/f   Int[1/(Sqrt[a + b*x]*Sqrt[c 
 + d*x]*Sqrt[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x] && Sim 
plerQ[a + b*x, e + f*x] && SimplerQ[c + d*x, e + f*x]
 
3.1.63.4 Maple [A] (verified)

Time = 1.59 (sec) , antiderivative size = 51, normalized size of antiderivative = 0.52

method result size
default \(\frac {\left (124 F\left (\frac {\sqrt {11+44 x}}{11}, \sqrt {3}\right )-55 E\left (\frac {\sqrt {11+44 x}}{11}, \sqrt {3}\right )\right ) \sqrt {5-2 x}\, \sqrt {22}}{132 \sqrt {-5+2 x}}\) \(51\)
elliptic \(\frac {\sqrt {-\left (-2+3 x \right ) \left (-5+2 x \right ) \left (1+4 x \right )}\, \left (\frac {7 \sqrt {11+44 x}\, \sqrt {22-33 x}\, \sqrt {110-44 x}\, F\left (\frac {\sqrt {11+44 x}}{11}, \sqrt {3}\right )}{121 \sqrt {-24 x^{3}+70 x^{2}-21 x -10}}+\frac {5 \sqrt {11+44 x}\, \sqrt {22-33 x}\, \sqrt {110-44 x}\, \left (-\frac {11 E\left (\frac {\sqrt {11+44 x}}{11}, \sqrt {3}\right )}{12}+\frac {2 F\left (\frac {\sqrt {11+44 x}}{11}, \sqrt {3}\right )}{3}\right )}{121 \sqrt {-24 x^{3}+70 x^{2}-21 x -10}}\right )}{\sqrt {2-3 x}\, \sqrt {-5+2 x}\, \sqrt {1+4 x}}\) \(167\)

input
int((7+5*x)/(2-3*x)^(1/2)/(-5+2*x)^(1/2)/(1+4*x)^(1/2),x,method=_RETURNVER 
BOSE)
 
output
1/132*(124*EllipticF(1/11*(11+44*x)^(1/2),3^(1/2))-55*EllipticE(1/11*(11+4 
4*x)^(1/2),3^(1/2)))*(5-2*x)^(1/2)*22^(1/2)/(-5+2*x)^(1/2)
 
3.1.63.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.08 (sec) , antiderivative size = 26, normalized size of antiderivative = 0.27 \[ \int \frac {7+5 x}{\sqrt {2-3 x} \sqrt {-5+2 x} \sqrt {1+4 x}} \, dx=-\frac {427}{216} \, \sqrt {-6} {\rm weierstrassPInverse}\left (\frac {847}{108}, \frac {6655}{2916}, x - \frac {35}{36}\right ) + \frac {5}{6} \, \sqrt {-6} {\rm weierstrassZeta}\left (\frac {847}{108}, \frac {6655}{2916}, {\rm weierstrassPInverse}\left (\frac {847}{108}, \frac {6655}{2916}, x - \frac {35}{36}\right )\right ) \]

input
integrate((7+5*x)/(2-3*x)^(1/2)/(-5+2*x)^(1/2)/(1+4*x)^(1/2),x, algorithm= 
"fricas")
 
output
-427/216*sqrt(-6)*weierstrassPInverse(847/108, 6655/2916, x - 35/36) + 5/6 
*sqrt(-6)*weierstrassZeta(847/108, 6655/2916, weierstrassPInverse(847/108, 
 6655/2916, x - 35/36))
 
3.1.63.6 Sympy [F]

\[ \int \frac {7+5 x}{\sqrt {2-3 x} \sqrt {-5+2 x} \sqrt {1+4 x}} \, dx=\int \frac {5 x + 7}{\sqrt {2 - 3 x} \sqrt {2 x - 5} \sqrt {4 x + 1}}\, dx \]

input
integrate((7+5*x)/(2-3*x)**(1/2)/(-5+2*x)**(1/2)/(1+4*x)**(1/2),x)
 
output
Integral((5*x + 7)/(sqrt(2 - 3*x)*sqrt(2*x - 5)*sqrt(4*x + 1)), x)
 
3.1.63.7 Maxima [F]

\[ \int \frac {7+5 x}{\sqrt {2-3 x} \sqrt {-5+2 x} \sqrt {1+4 x}} \, dx=\int { \frac {5 \, x + 7}{\sqrt {4 \, x + 1} \sqrt {2 \, x - 5} \sqrt {-3 \, x + 2}} \,d x } \]

input
integrate((7+5*x)/(2-3*x)^(1/2)/(-5+2*x)^(1/2)/(1+4*x)^(1/2),x, algorithm= 
"maxima")
 
output
integrate((5*x + 7)/(sqrt(4*x + 1)*sqrt(2*x - 5)*sqrt(-3*x + 2)), x)
 
3.1.63.8 Giac [F]

\[ \int \frac {7+5 x}{\sqrt {2-3 x} \sqrt {-5+2 x} \sqrt {1+4 x}} \, dx=\int { \frac {5 \, x + 7}{\sqrt {4 \, x + 1} \sqrt {2 \, x - 5} \sqrt {-3 \, x + 2}} \,d x } \]

input
integrate((7+5*x)/(2-3*x)^(1/2)/(-5+2*x)^(1/2)/(1+4*x)^(1/2),x, algorithm= 
"giac")
 
output
integrate((5*x + 7)/(sqrt(4*x + 1)*sqrt(2*x - 5)*sqrt(-3*x + 2)), x)
 
3.1.63.9 Mupad [F(-1)]

Timed out. \[ \int \frac {7+5 x}{\sqrt {2-3 x} \sqrt {-5+2 x} \sqrt {1+4 x}} \, dx=\int \frac {5\,x+7}{\sqrt {2-3\,x}\,\sqrt {4\,x+1}\,\sqrt {2\,x-5}} \,d x \]

input
int((5*x + 7)/((2 - 3*x)^(1/2)*(4*x + 1)^(1/2)*(2*x - 5)^(1/2)),x)
 
output
int((5*x + 7)/((2 - 3*x)^(1/2)*(4*x + 1)^(1/2)*(2*x - 5)^(1/2)), x)